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A growing number of studies are examining the factors driving historical and contemporary evolution in wild populations.

By combining surveys of genomic variation with a comprehensive assessment of environmental parameters, such studies can

increase our understanding of the genomic and geographical extent of local adaptation in wild populations. We used a large-scale

landscape genomics approach to examine adaptive and neutral differentiation across 54 North American populations of Atlantic

salmon representing seven previously defined genetically distinct regional groups. Over 5500 genome-wide single nucleotide

polymorphisms were genotyped in 641 individuals and 28 bulk assays of 25 pooled individuals each. Genome scans, linkage

map, and 49 environmental variables were combined to conduct an innovative landscape genomic analysis. Our results provide

valuable insight into the links between environmental variation and both neutral and potentially adaptive genetic divergence. In

particular, we identified markers potentially under divergent selection, as well as associated selective environmental factors and

biological functions with the observed adaptive divergence. Multivariate landscape genetic analysis revealed strong associations of

both genetic and environmental structures. We found an enrichment of growth-related functions among outlier markers. Climate

(temperature–precipitation) and geological characteristics were significantly associated with both potentially adaptive and neutral

genetic divergence and should be considered as candidate loci involved in adaptation at the regional scale in Atlantic salmon.

Hence, this study significantly contributes to the improvement of tools used in modern conservation and management schemes

of Atlantic salmon wild populations.
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The environment can influence evolutionary trajectories of living

organisms by imposing selective pressures and limiting migration.

The last decade has witnessed the birth of landscape genetics, a

field devoted to understanding the contribution of environmen-

tal conditions on the evolutionary processes shaping population

genetic structure in the wild (Manel et al. 2003). Although the
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emerging phase of landscape genetics mainly focused on link-

ing neutral genetic divergence with ecological constraints to gene

flow (e.g., Petren et al. 2005; Leclerc et al. 2008), a limited num-

ber of studies have also accounted for adaptive divergence (Bonin

et al. 2006; Gaggiotti et al. 2009; Manel et al. 2010a, b). The use

of relatively low genomic coverage and anonymous markers often

limited the potential for functional inferences. Today, the avail-

ability of high throughput genomic tools combined with genome

scan facilitates the investigation of adaptive genomic divergence.

Ecological and landscape genomics now have greater power to

disentangle adaptive from neutral genetic divergence and iden-

tify the environmental factors driving divergent selection (Bonin

2008). Furthermore, the possible links between newly developed

single nucleotide polymorphism (SNP) markers and functional

genes can reveal key biological processes or functions targeted

by environmental selective pressures (Bonin 2008; Parisod and

Holderegger 2012).

In widely distributed species, local populations often experi-

ence heterogeneous environmental conditions, and may evolve in

these different environments for thousands of years. In such cases,

these environmental conditions are suspected to have shaped dis-

tinct genetic composition among populations, and local adaptation

of genetically based phenotypic traits. In general, local adaptation

results in the superior fitness of indigenous individuals compared

to emigrants (Kawecki and Ebert 2004). Nevertheless, the ge-

ographic extent of local adaptation can vary depending on the

nature of the adaptation, the strength of the selection, the extent

of gene flow between populations, and their effective population

size (Lacy 1997; Hansen et al. 2002). However, the genomic extent

of local adaptation can also differ among populations depending

on the degree of genetic isolation (Feder and Nosil 2010) or the

complexity of the trait under selection (e.g., single vs. multilocus,

pleiotropy, epistasis). Even in light of recent technical advances,

investigating the adaptive divergence of wild populations occupy-

ing vast heterogeneous environments is a daunting task, especially

on nonmodel species.

Although Atlantic salmon is not a classical model organism,

the population genetic structure of this species has been exten-

sively studied (e.g., Vasemägi et al. 2005; King et al. 2007; Palstra

et al. 2007; Tonteri et al. 2009; Bourret et al. 2013). In North

America, the most extensive study on this species was performed

by Dionne et al. (2008) and involved a comprehensive landscape

genetics approach aiming to elucidate the environmental param-

eters influencing the genetic structure of 51 populations. Dionne

et al. (2008) found that temperature regime and coastal distance

from a southern reference influenced neutral divergence among

populations, which suggested a regional component to local adap-

tation. A hierarchical structure analysis grouped populations into

seven regional groups based upon differentiation at microsatellite

markers. The recent development of a large panel of SNPs, largely

discovered from coding regions, offers a more powerful way to

gain insights into the possible role of environmentally induced

selective pressures in shaping patterns of adaptive divergence and

further assess the geographic scale of local adaptation in Atlantic

salmon (Bourret et al. 2013).

Local adaptation in salmonids has been recognized as a key

evolutionary process driving phenotypic and genetic divergence

among populations (Taylor 1991; Garcia de Leaniz et al. 2007;

Fraser et al. 2011). However, local adaptation for these species

is still equivocal in front of the difficulties of performing com-

mon garden and reciprocal transplant experiments, especially on

large geographic scales. In Atlantic salmon, different populations

exhibit divergence in morphological traits, migratory tactics, and

reproductive strategies that could be associated with local adap-

tation since they have been shown to be heritable (Claytor et al.

1991; Palstra et al. 2007; Vähä et al. 2007; Paez et al. 2010).

Moreover, recent studies have proposed that genetic diversity at

MHC class-IIB genes could represent local adaptation to cope

with pathogen diversity in rivers with different thermal regimes

(Dionne et al. 2007, 2009).

The main objective of this study was to further investigate

the environmental factors shaping patterns of genetic divergence

and the scale of local adaptation in Atlantic salmon. We accom-

plished this by increasing the number of genetic markers used by

150-fold and including a larger set of environmental variables.

More specifically, we first revisited the population genetic struc-

ture of Atlantic salmon to assess the congruence of a wider ge-

nomic coverage with previously shown genetic structure. We then

tested for significant associations between variation in 49 climate,

geological, and river specific characteristics and regional genetic

structure at markers identified as being potentially under divergent

selection. Third, using mapping information, we documented the

genomic distribution of these outlier markers. Finally, using avail-

able gene annotations, we examine the functional implications of

adaptive and environmental divergence among populations and

regional groups of Atlantic salmon.

Materials and Methods
SAMPLES

Samples of adult anadromous Atlantic salmon were collected in

the summer of 2004. Methods for tissue collection, storage, DNA

extraction, and microsatellite analyses for samples collected from

51 rivers were previously detailed in Dionne et al. (2008). In

this study, we also added samples from three new rivers. DNA

was extracted from fin clips as described by Dionne et al. (2008)

from a total of 1341 individuals from 54 rivers in Eastern Canada

(Tables 1 and 3; Fig. 1). SNP genotyping was conducted using

two different approaches. We first performed a single individual

3 4 7 0 EVOLUTION DECEMBER 2013



SPECIAL SECTION

Table 1. Description of regional groupings and parameters associated with sample sites composing the groups: latitude and longitude,

number of individuals genotyped (N), average call rate per population (CR), and average expected (HE) and observed (HO) heterozygosities

per population.

Regional groups Population ID Code Latitude Longitude N CR HO HE

Southern Québec Miramichi MIR 47.09 − 65.32 25 0.99 0.181 0.179
Matapédia MAP 47.97 − 66.93 25 0.97 0.204 0.202
Grande Cascapédia CS 48.21 − 65.90 25 0.98 0.195 0.191
St-Jean Gaspésie SJQG 48.77 − 64.43 25 0.99 0.205 0.202
Sainte-Anne SA 49.12 − 66.50 25 0.99 0.199 0.196
Matane MAT 48.85 − 67.53 25 0.98 0.203 0.202
Québec City Malbaie ML 47.65 − 70.13 25 0.99 0.182 0.176
Du Gouffre DGO 47.43 − 70.49 25 0.99 0.181 0.175
Sainte-Marguerite SM 48.25 − 69.93 25 0.99 0.178 0.173
Higher North Shore Trinité TRI 49.42 − 67.30 25 0.99 0.179 0.179
Moisie MOI 50.20 − 66.07 25 0.99 0.181 0.176
St-Jean Côte-Nord SJQC 50.28 − 64.33 25 0.99 0.185 0.181
Natashquan NAT 50.12 − 61.80 25 0.99 0.170 0.174
Lower North Shore Musquaro MUS 50.22 − 61.07 25 0.99 0.163 0.168
Etamamiou ET 50.27 − 59.97 25 0.99 0.166 0.169
Gros Mécatina MEC 50.77 − 59.08 25 0.98 0.162 0.162
Anticosti Jupiter JU 49.47 − 63.58 25 0.99 0.202 0.197
Aux Sumons SU 49.42 − 62.23 25 0.98 0.196 0.191
Chaloupe CHA 49.13 − 62.53 23 0.97 0.201 0.198
Labrador Napetipi NAP 51.31 − 58.06 25 0.99 0.185 0.185
Saint-Paul STP 51.47 − 57.70 25 0.98 0.180 0.182
Vieux-Fort VF 51.32 − 58.02 25 0.99 0.190 0.188
Southwest Brook SW 53.42 − 57.23 25 0.99 0.177 0.174
Ungava George GE 58.82 − 66.17 18 0.99 0.160 0.156
Koksoak KO 58.53 − 68.17 25 0.99 0.165 0.163
Aux Feuilles AF 58.77 − 70.07 25 0.99 0.159 0.157

Table 2. Analysis of molecular variance (AMOVA) using neutral

markers (n = 3016) and divergent outlier markers (n = 68). *P-value

< 0.001.

Source of Neutral Divergent
variation df SNPs SNPs

Among groups 6 6.42* 28.04*
Among

populations
within groups

19 3.40* 3.00*

Within
populations

1254 90.18* 68.95*

genotyping approach for 641 fish from 26 rivers representative of

the seven previously identified regional groups, with an average

of 25 individuals per river. Second, to increase the number of

populations analyzed while limiting the cost of genotyping, we

performed a bulk genotyping approach for 700 individuals from

28 rivers. Previous studies have shown that reliable SNP allele

frequency estimates could be obtained by this method (Macgre-

gor et al. 2008; Craig et al. 2009). To prepare bulk assays, DNA

from 25 individuals per river was quantified in triplicate using

Quant-iT PicoGreen dsDNA Assays (Life Technologies, Carls-

bad, CA). The DNA concentrations for all 25 individuals were

standardized to the concentration of the individual with the low-

est DNA concentration. For each river, those 25 individuals were

then pooled into a single 50-μL bulk assay and used as individual

for the genotyping steps.

GENOTYPING QUALITY CONTROL

From the 26 populations genotyped individually, four were geno-

typed using version one (V1) of the SNP array (described in

Bourret et al. 2013) as they were used in the first assessment

study of the array. The remaining populations (22 in individual

genotyping and 28 in bulk assays) were genotyped using version

two (V2) of the SNP array developed by the Centre for Integrative

Genetics (CIGENE, Âs, Norway). A total of 5349 SNP markers

on V2 were selected from V1 for their high quality and 219 SNPs

were added from new sequence data. These additional markers

were assessed in the same fashion as markers on V1 and discovery

and quality control methods for all 5568 SNPs on V2 can be found
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Table 3. Discriminant analysis population assignment results for bulks assays in contrast to previous classification of Dionne et al.

(2008). NA refers to population not previously classified.

Number Population ID Previous classification Bulk assigned to

1 Ouelle Québec City Southern Québec
2 Laval Higher North Shore Southern Québec
3 Patapédia Southern Québec Southern Québec
4 Bonaventure Southern Québec Southern Québec
5 Petite Cascapédia Southern Québec Southern Québec
6 Cap-Chat Southern Québec Southern Québec
7 York Southern Québec Southern Québec
8 Madeleine Southern Québec Southern Québec
9 Grand Pabos Southern Québec Southern Québec
10 Darmouth Southern Québec Southern Québec
11 Causapscal Southern Québec Southern Québec
12 Mitis Southern Québec Southern Québec
13 Upsalquitch Southern Québec Southern Québec
14 Little Main Southern Québec Southern Québec
15 Kegwick Southern Québec Southern Québec
16 Des Escoumins NA Québec City
17 Jacques Cartier Québec City Québec City
18 Petit Saguenay Québec City Québec City
19 Kecarpui NA Lower North Shore
20 Corneille Lower North Shore Lower North Shore
21 Muddy Bay Labrador Labrador
22 Sand Hill Labrador Labrador
23 Eagle Labrador Labrador
24 Godbout Higher North Shore Higher North Shore
25 Aux Anglais Higher North Shore Higher North Shore
26 Watshishou Higher North Shore Higher North Shore
27 Aganus Higher North Shore Higher North Shore
28 Aux Rochers Higher North Shore Higher North Shore

in Bourret et al. (2013). Genotyping was performed according to

the manufacturer’s instructions using the Illumina infinium assay

(Illumina, San Diego, CA).

Samples with greater than 85% call rate (CR; proportion of

SNPs successfully genotyped) were retained for future analyses.

Markers absent from V2, but genotyped on V1 in four popula-

tions, were excluded and subsequent quality control steps were

then performed on the remaining V2’s 5568 SNPs. Using Illu-

mina’s Genotyping Module software, we assessed each SNP’s

cluster pattern using all individual of North American available

populations (n = 900 individuals). Visual inspection allowed for

the classification of SNPs into different categories: (i) single

SNP, (ii) failed, (iii) monomorphic, and (iv) paralogous sequence

variants (PSVs), and (v) multisite variants (MSVs; Table S1).

Markers falling in categories other than “single SNP” were ex-

cluded from further analyses as well as markers with minor allele

frequency less than 1 percent (MAF < 0.01). Ascertainment bias

was assessed in Bourret et al. (2013) and was suggested to be min-

imal in North American populations based on an L-shape distribu-

tion of MAF (high proportion of low-frequency markers rapidly

decreasing toward low proportion of high-frequency markers).

POPULATION STRUCTURE ON INDIVIDUAL SAMPLES

Using individually genotyped samples (26 rivers), we measured

global and per SNP observed and expected heterozygosity (HO

and HE) within each population. To exclude markers potentially

under divergent or balancing selection from the basic population

structure analyses, we then used hierarchical Fdist (Excoffier et al.

2009), a genome scan analysis implemented in ARLEQUIN 3.5

(Excoffier and Lischer 2010). This hierarchical method can detect

outlier loci among groups of populations (FCT) and represents the

most appropriate method for detection of selected markers in our

system because previous studies found a hierarchical structure

among North American populations (Dionne et al. 2008, 2009). To

this end, we classified rivers in seven regional groups previously

identified by Dionne et al. (2008) for the detection of selection

analysis. Markers with FCT P-values > 0.01 were then used as

the neutral basis for population structure analyses.
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Figure 1. Map showing sample sites. Populations are linked to the river codes in Table 1 for individually genotyped populations (n =
26) and numbers in Table 3 for bulk assays. Tick forms relate to regional groups as reported in Dionne et al. (2008).

Pairwise genetic differentiation between populations was es-

timated by the FST estimate of Weir and Cockerham (1984) using

ARLEQUIN 3.5 with 10,000 permutations to determine statisti-

cal significance. To confirm the regional classification proposed

by Dionne et al. (2008), a principal component analysis on indi-

vidual genotypes was carried out using the SmartPCA program

implemented in the EIGENSOFT package (Patterson et al. 2006)

and fitted using R (R core development team). Furthermore, us-

ing the confirmed regional structure, two analyses of molecular

variance (AMOVAs) were performed using ARLEQUIN 3.5, one

on markers identified as potentially under divergent selection and

a second on neutral markers.

BULK ASSAYS POPULATION STRUCTURE

In the Illumina’s Genotyping Module software used to call geno-

types, red and green signals (representing homozygotes AA and

BB) are normalized to θ values of 0 and 1. The expected θ value

for a heterozygote is 0.5, but generally, clusters are biased toward

0 or 1. To accurately predict allele frequencies from bulk assays,

we calculated a k correction factor for each SNP, which is the av-

erage θ value for heterozygotes with k = θ hets/(1 − θ hets). We

selected the heterozygotes from genotyped individuals with CR >

0.99 to estimate the correction factor as accurately as possible. We

then calculated the B allele frequency (BAF) on markers retained

following the previously described filtering procedure while also

excluding markers without heterozygotes among individuals (CR

> 0.99) with BAF = θ bulkassay/(θ bulkassay + k(1 − θ bulkas-

say). To test the robustness of this genotyping method, bulk assays

from five rivers that were previously genotyped using the single

individual genotyping approach were also genotyped using the

same individuals pooled in a single bulk assay per population

(two replicates). A population’s allele frequencies from both bulk

assays and individual genotypes for each SNP were then con-

trasted using a simple regression and fitted using R. To further

confirm the Dionne et al. (2008), regional classification and clas-

sify the additional three populations genotyped as bulk assays,

we used a discriminant analysis implemented in SAS 9.1 (proc

discrim; SAS Institute Inc., Cary, NC), which acts as a custom

population assignment method. In the first step of this analysis, the

population’s allele frequencies for the 26 individually genotyped

rivers are used to build a discriminant rule that classifies popula-

tion in their regional group based on statistical distances estimated

by the procedure. Then, using this discriminant rule, bulk assays

are given a probability of belonging to either one of the regional

groups based on estimated population allele frequencies (BAF).

ENVIRONMENTAL STRUCTURE

Rivers (n = 26) used in individual genotyping were also charac-

terized for 49 environmental parameters distributed among three

main categories, namely climate, river properties, and geological

variables. A detailed list of environmental parameters is available

in Table 4. Climate variables (n = 19) were extracted from 35

EVOLUTION DECEMBER 2013 3 4 7 3
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meteorological stations where values of numerous temperature

and precipitation parameters were collected over a period of

approximately 30 years (1971–2000, Environment Canada,

http://climate.weatheroffice.gc.ca/Welcome_e.html). We used

data directly from a station to characterize a river when it was

located within 50 km of the mouth of the river. Otherwise, we

estimated values for a subset or all climate parameters using a

Kriging interpolation with the Geostatistical Analyst in ArcGIS

9.2 (ESRI Inc., Redlands, CA), a common geostatistical tech-

nique to predict values at unmeasured locations. River properties

(n = 11) were obtained from the Ministère des Ressources

naturelles et de la Faune du Québec (MRNF) and the Canada3D

database available through the GéoGratis website of the Ministry

of Natural Resources Canada (NRC; http://geogratis.cgdi.gc.ca)

as described in Dionne et al. (2008). When a river property

parameter was missing for a given river, it was replaced by the

average across all populations for that parameter (total of 23/437

cases for 6/19 parameters). Six categorical geological parameters

were then considered and divided in 19 subcategories. The

dominant subcategory (scored as 1) in a river’s watershed for

each parameter was determined by estimating the area covered

by polygons of the geological layer associated with each of the

subcategories and identifying the subcategory with the highest

coverage. This was realized by examining the intercept between

a watershed layer provided by the MRNF and a geological layer

from the GeoScape Canada database available on the Natural

Research Council of Canada (NRC) website (http://www.

nrcan.gc.ca/earth-sciences/products-services/mapping-product/

geoscape/6032). Each geological parameter was then transformed

into presence/absence scores for each subcategory where only the

dominant subcategory of a given river was scored as 1. This trans-

formation was performed to include these categorical parameters

along with continuous variables (climate and river properties)

in further analyses. To minimize the colinearity among all 49

environmental parameters, we performed a principal component

analysis on populations using SAS 9.1 (proc factor; rotation

= varimax). As a surrogate for environmental parameters, we

then used a number of principal component factors (PC factors)

equal to the number of eigenvalues greater than 1, a widely used

statistical rule known as the Kaiser–Guttman criterion (Yeomans

and Golder 1982).

GENETIC–ENVIRONMENT ASSOCIATIONS

Association between population genetic structure and environ-

mental parameters was assessed via a redundancy analysis (RDA),

which is a special case of canonical correlation analysis (CCA).

The CCA is a statistical test used to relate information from two

different data tables. Here, using rivers as subjects, we specifi-

cally tested if the independent parameters (environmental PC fac-

tors) could predict the dependent parameters (allele frequencies).
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SPECIAL SECTION

An analysis of variance (ANOVA; 1000 permutations) was then

performed to assess the global significance of the RDA and a

marginal ANOVA (1000 permutations) was also run to determine

if environmental PC factors were significantly correlated with

allele frequencies. We also estimated the effect size of the rela-

tionship between the two datasets using Wilks’ Lambda, which

is a parameter analogous to the correlation coefficient (R2). We

then computed Pearson’s correlation coefficients for all markers

used in the RDA and environmental PC factors. Moreover, to lo-

calize potential genomic regions under environmentally divergent

selection, we used a linkage map for the North American Atlantic

salmon (Brenna-Hansen et al. 2012) built using the same SNP

array to map markers potentially under divergent selection. We

mapped each SNP according to the results from the hierarchical

Fdist as well as the Pearson’s correlation coefficient values for each

significantly associated environmental factor. Analyses from this

section were all performed in R.

GENE ONTOLOGY AND SNP ANNOTATION

Blast2go (Gotz et al. 2008) was used to associate gene ontol-

ogy (GO) annotation terms to all SNPs retained for genomic

analyses (3118 SNPs; see Results). A homology search was first

completed by performing a BLAST (Altschul et al. 1990) search

of the available flanking sequences for each SNP on the NCBI

nr public database with the e-value threshold set to 1 × 10−10.

Blast2go then retrieved GO terms associated with the obtained

BLAST hits. To determine if the biological processes, molecular

functions or cellular components of the markers potentially un-

der divergent selection were over-, equally, or underrepresented

among outlier markers when compared to the entire retained SNP

dataset, we performed an enrichment analysis using Fisher’s exact

test corrected for multiple tests by applying a false discovery rate

(FDR) of 0.05 (Benjamini and Hochberg 1995).

Results
GENOTYPING AND QUALITY CONTROL

One individual sample (SU-14) with a CR < 0.85 (0.77) was

excluded from the dataset. After initial quality control and clas-

sification of genotypes obtained from 900 samples, we classi-

fied 3974 markers out of 5568 SNPs features on the V2 ar-

ray as single locus and polymorphic SNPs (i.e., diploid SNPs)

for North American Atlantic salmon. Among the 3974 “good”

SNPs, 3118 markers showed an overall MAF > 0.01. There-

fore, besides the individuals genotyped in the bulk assays, 3118

SNPs and 640 individuals were kept for further analyses. Table 1

shows summary data for call rates (CR), observed (HO), and ex-

pected heterozygosity (HE) across populations (Table S2 across

markers).

POPULATION STRUCTURE ON INDIVIDUAL SAMPLES

When we followed the regional grouping proposed by Dionne

et al. (2008), the average FCT across 3118 loci was 0.057 (ranging

from −0.026 to 0.535). At the 0.01 and 0.05 significance level

respectively, 68 and 179 markers were identified as potentially

under divergent selection and 34 and 208 markers were identified

as potentially under balancing selection (Table S3). Removing

outlier markers at the 0.01 significance level (68 divergent and

34 balanced), 3016 markers were used as the basis for the neutral

pairwise differentiation estimates, PCA and AMOVA. All pair-

wise comparisons of genetic differentiation between populations

were highly significant (P < 0.001; Table S4). In a principal com-

ponent analysis (PCA) on individual genotypes, five principal

component (PC) factors determined at least 1% of the variation

each, and together explained 10.5% of the total genetic varia-

tion among individuals. Principal components 1–3 accounted for

4.0%, 2.3%, and 1.6%, respectively. Principal components 1–

3 differentiated populations into the seven regional groups that

Dionne et al. (2008) previously defined (Fig. 2). Both AMOVAs

on 3016 neutral SNPs and 68 divergent SNPs showed significant

genetic variation among groups (Table 2). For neutral markers,

the genetic variation attributed to differences among groups ac-

counted for 6.42% whereas this percentage increased to 28.06%

for divergent markers. Differentiation among populations within

groups was similar with 3.04% and 3.00% for neutral and di-

vergent SNPs, respectively. Thus, intergroup differentiation was

about 4.5 times more pronounced at outlier markers than neu-

tral loci whereas interpopulation differentiation within groups re-

mained the same.

BULK ASSAYS POPULATION STRUCTURE

Of the available individuals genotyped (n = 900), 728 had CR

> 0.99 and were thus used to estimate the marker’s k correc-

tion factors. Of the 3118 markers used in previous analyses, 287

markers did not have heterozygotes to estimate the correction

factor and were excluded from bulk assays analyses. Correla-

tions of population allele frequencies estimated from bulk assays

to those measured with actual individual genotypes yielded cor-

relation coefficients (R2) ranging from 0.898 (MAP) to 0.921

(DGO) with all P-values < 0.001. Globally, population allele fre-

quencies estimated from bulk assays were highly correlated with

those estimated from individual genotypes with an overall R2 =
0.909 (P-value < 0.001; Fig. S1). Based on the allele frequen-

cies of the 26 populations genotyped on an individual basis and

on the regional group they belonged to, we were able to build a

powerful discriminant rule. Regional distances estimated via the

discriminant analysis allowed us to assign all 28 bulk-assayed

populations to one of the seven regional groups with a probability

of 1.00 (Table 3). Out of the 26 previously classified populations

(Dionne et al. 2008), only the Ouelle and Laval rivers were both
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SPECIAL SECTION

Figure 2. Principal components analysis of genetic differentiation among individuals based on 3016 SNP markers (each point represents

one individual) with principal component 1 (PC1: 4.02% of variance) against PC2 (2.33% of variance) on the left panel and PC1 against

PC3 (1.62% of variance) on the right panel. Color and tick form reflect population’s regional groups as reported in Table 1.

“missassigned” to the Southern Québec region instead of the

Québec City region for the former and the Higher North Shore

region for the latter population.

ENVIRONMENTAL STRUCTURE

In the remote Ungava region, compiled climate data were avail-

able for only a single meteorological station and the next closest

stations were located over 1000 km away from the mouth of the

rivers. Therefore, for these rivers, the interpolation yielded values

outside a reasonable confidence interval (data not shown). For this

reason and considering that these populations encounter extreme

climatic conditions, the three rivers from Ungava (AF, GE, and

KO) were left out of environmental analyses to avoid confound-

ing factors due to biased outlier values. Of the 23 rivers left, 11

were located within close distance to a meteorological station and

did not require interpolated climate data. We then used the in-

terpolated climate data partially for three rivers (for degree-days)

and completely for the remaining nine rivers. A PCA on envi-

ronmental parameters presented 10 PC factors with eigenvalues

greater than 1, and together explained 92.1% of the total genetic

variation among individuals. Principal components factors 1–4

accounted for 33.8%, 12.8%, 11.3%, and 8.3%, respectively. PC

factor 1, PC factor 3, and PC factor 4 differentiated the popula-

tions along the spatial axes whereas PC factor 2 offered a similar

dispersion of populations as PC factor 1 (not shown). In general,

populations tended to group according to previously identified re-

gional groups but several populations showed less clear patterns

(Fig. 3). Different PC factors were dominated by different cate-

gories of environmental parameters. As indicated by the loadings

of parameters on the 10 PC factors retained (Table 4), PC factor

1 was primarily loaded with climate data related to temperature

(10/16), PC factor 2 by climate data related to precipitation (7/8),

PC factor 3 by river properties (6/6), PC factors 4 and 7 by geo-

logical data (3/3 and 3/3, respectively).

GENETIC–ENVIRONMENT ASSOCIATIONS

Using the 23 rivers as subjects and the 10 environmental PC factors

as explanatory variables, Figure 4 shows a RDA performed on the

179 SNPs potentially under divergent selection (0.05 significance

level) as the response variables. We used this outlier threshold

to be consistent with correlation and annotation analyses where

a less stringent threshold for outliers was used. Moreover, RDA

results using more or fewer markers were similar, and adding

more markers increased variance and P-values (data not shown).

Globally, the RDA was highly significant with a P-value < 0.001

(ANOVA, F = 5.025). The first 10 RDA axes accounted for 80.7%

of the variation, whereas the RDA axes 1 and 2 represented 49.7%

and 12.4%, respectively. The marginal ANOVA showed that PC

factors 1, 2, 4, and 7 were significant predictors of the popula-

tions’ allele frequencies with P-values < 0.001 (respective F =
20.617, 3.379, 10.023, and 4.536; Fig. 4). Principal component

factors 3, 9, and 10 presented significant relationships but to a

lesser degree (P-values between 0.015 and 0.038). The correla-

tion between the multivariate environmental and genetic structure
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Figure 3. Principal components analysis of environmental parameters (n = 49) among populations (n = 23) with: (A) climate-related PC

factor 1 (temperature; 33.8% of variance) against climate-related PC factor 2 (precipitation; 12.8% of variance); (B) PC factor 1 against PC

factor 3 (river properties; 11.3% of variance); (C) PC factor 1 against PC factor 4 (geology; 8.3% of variance). Population locations on the

spatial axes are marked by their code name and colors reflect population’s regional groups as reported in Table 1.

was highly significant (P-value < 0.001) with an effect size of

0.980 (analogous to R2). The distribution of environmental PC

factors 1, 2, 4, and 7 Pearson’s correlation coefficients for the 179

outlier markers used are shown in Figure 5. A higher frequency of

correlation coefficients greater than 0.6 is found for PC factor 1,

whereas an increasing frequency of lower coefficients generally

characterized the PC factors with decreasing F-statistics values.

The genomic distribution of FCT values and PC factor 1 Pearson’s

correlation coefficients among all 3118 SNPs are shown in Figure

6. Overall, outlier markers are widely distributed among all link-

age groups. Moreover, markers highly correlated with PC factor

1 are present on all linkage groups, whereas identified genetic

outliers are often those with the highest correlation coefficient to

PC factors on a given linkage group.

GENE ONTOLOGY AND SNP ANNOTATION

The BLAST and annotation steps in Blast2go yielded 1119 SNPs

with annotations (Table S5). Using an FDR of 0.05, an enrichment

analysis did not indicate significant over- or underrepresentation

of any biological pathway among the 208 markers potentially

under balancing selection. However, 12 GO-terms were overrep-

resented among the 179 markers potentially under divergent selec-

tion, which were associated with 12 SNPs (Table S6). Molecular

functions, biological processes, and cell compartments associated

with identified GO-terms suggested that these markers were asso-

ciated with growth. The particular categories highlighted by the

enrichment analysis include: positive regulation of JNK cascade,

ephrin receptor binding, syndecan binding, frizzled binding. It

should be noted that these categories were highlighted from a

common hit of four markers for the syntenin-1 protein of Atlantic

salmon (GenBank: ACI33400.1). We then plotted the relationship

between population allele frequencies of these four SNPs against

the environmental parameter with the highest loading on PC fac-

tor 1 (average temperature between May and September). All four

models (generalized linear models) showed a similar significant

regression (Fig. 7 shows one example regression). For PC fac-

tors 1 and 4, we then divided outliers into quartiles according to

their correlation coefficients and used the fourth quartile (highly

correlated markers) to perform enrichment analyses on the set

of 179 outliers as reference. The test for temperature correlated

markers identified similar functions and the same four markers

reported above, which all had correlation coefficients greater than

0.70 with PC factor 1. However, no terms were overrepresented

for geological-correlated markers for FDR = 0.05, whereas the

enrichment was significant with a less stringent 0.05 P-value

threshold.

Discussion
By surveying more than 3000 SNP markers widely distributed

across the Atlantic salmon genome from 54 populations in com-

bination with a thorough examination of 49 environmental factors

in 23 North American rivers, we have been able to complete one

of the most extensive landscape genomics analyses reported to

date. The innovative statistical framework presented here demon-

strated a very strong correlation between genetic and environmen-

tal structure characterized by significant associations between po-

tentially adaptive divergence and climate. Geological parameters

were also found to be important factors associated with potentially

adaptive divergence. Our results suggest a regional component to

local adaptation in Atlantic salmon that is associated with both

climatic and geological factors. Furthermore, among markers po-

tentially under divergent selection, we observed an enrichment of

GO-terms associated with growth-related functions, suggesting
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Figure 4. Redundancy analysis axes 1 (49.7% of variance) and 2 (12.4% of variance) showing the position of allele frequency vectors

for the 179 SNP markers potentially under divergent selection at the 0.05 significance level (plus marks) and related environmental PC

factors as blue arrows. Only environmental PC factors significantly associated with genetic markers are identified (P-values < 0.001).

Markers’ positions relate to scales on the bottom and left axes. Environmental PC factors positions relate to scales on top and right axes.

Population locations on the spatial axes are marked by their code name and colors reflect population’s regional groups as reported in

Table 1.

a role for these biological functions in the adaptive divergence

among populations and regional groups.

GENETIC DIVERGENCE

The first objective of this study was to revisit the population ge-

netic structure of Atlantic salmon in this system with a new set of

SNP markers and confirm whether the regional structure revealed

with microsatellites was supported with SNP-array genotypes.

Two results strongly suggest that the neutral genetic structure

supported by SNP markers is similar to that of the microsatellite

markers. First, pairwise FST estimates obtained for both types of

markers are highly correlated (data not shown). Second, the distri-

bution of populations along the first three principal components

of the PCA shows a regional organization identical to the one

reported in Dionne et al. (2008). Regional differences were such

that by using the population allele frequencies of 2831 markers,

we were able to build a powerful discriminant rule to classify

bulk-assayed populations to their regional group. Out of 26 bulk

assays for which populations had already been associated with a

regional group in Dionne et al. (2008), 92% were concordantly

assigned to the same regional group using our discriminant rule

and SNPs. In the only two discordant populations, the Ouelle

River population was originally classified as part of the Québec

City region but included in the Southern Québec region with SNP

markers. This river is actually located on the western limit of

the Southern Québec group, which is bordered by the Québec

City group. It thus seems plausible that this discordant regional

assignment is at least partially due to an improved assignment

power resulting from the increased number of markers. The Laval

river population, however, was previously classified in the Higher

North Shore regional group and is now assigned to the Southern

Québec group, which is not geographically congruent. The only

reasonable explanation we can offer at this stage is that the Laval,

which is a small population (N < 100 individuals), might have

been seriously affected by drift effects and occasional straying,

causing this mixed signal in the population. However, two of the

new populations analyzed with the bulk assays, Kecarpui and Des

Escoumins, were assigned to regional groups concordant with
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Figure 5. Pearson’s correlation coefficient distribution for the 179 SNP markers potentially under divergent selection at the 0.05 signif-

icance level when correlated with environmental PC factors significantly associated with genetic markers (P-values < 0.001). Presented

in order of decreasing F-static value of analysis of variance from left to right where: (A) PC factor 1 (climate-temperature), (B) PC factor 4

(geology), (C) PC factor 7 (geology), and (D) PC factor 2 (climate-precipitation).

geographical location. Overall, given the convincing regional as-

signment probabilities provided by the discriminant analysis, we

argue that further interpretations concerning the regional genetic

structure in the system could be extrapolated to bulk-assayed pop-

ulations.

Apart from generally confirming the regional structure ob-

served in Dionne et al. (2008), a second contribution of the new

genomic dataset was the detection of 68 outliers potentially un-

der divergent selection among populations. For this relatively

small set of markers, the genetic variation attributed to differences

among regions was more than four times the observed proportion

for neutral SNPs (28.04% and 6.42%, respectively). Comparing

indirect estimates of migration rates between and within regional

groups, Dionne et al. (2008) previously hypothesized that local

adaptation at the regional scale was driving higher population

differentiations for intergroup rather than intragroup population

comparisons even when the distance between populations was

similar in either comparisons. This agrees with theoretical expec-

tations that local selection in subdivided populations enhances

between-deme genetic diversity (Charlesworth et al. 1997). It is

also in agreement with our observation of an increased level of di-

vergence between regions at outliers relative to neutral SNP mark-

ers but not between populations within a given regional group. In

summary, our results provide further evidence for a possible role

of selection in shaping regional population structure in Atlantic

salmon.

GENETIC–ENVIRONMENT ASSOCIATIONS

Once the putative targets of divergent selection were identified

from the genome scan, the second step was to identify the partic-

ular environmental variables acting as potential selective agents

driving adaptive genetic divergence among regional groups. We

found a strong association between the overall regional genetic

groups and environmental structure. This indicated that these re-

gional genetic groups also differed in ecological settings and that

several environmental factors could represent selective agents

leading to regional local adaptation. In particular, four PC fac-

tors were found to be strong predictors of genetic divergence.

Temperature-related PC factor 1 and precipitation-related PC fac-

tor 2 were both climate factors correlated with genetic divergence,

but displayed opposite direction vectors on the RDA axes, whereas

geological-related PC factors 4 and 7 oriented in relatively simi-

lar directions to each other. Owing to the orthogonal relationship

between climate and geological vectors on the RDA, we chose to

discuss environmental factors as two main axes correlated with

potentially adaptive divergence, namely climate and geology. Fur-

thermore, because PC factor 2 was the fourth factor in decreasing

order of statistical significance and negatively correlated with

temperature on the RDA axes, we hereafter refer to temperature

as a proxy for climate conditions.

Temperature regime was identified as the most important se-

lective agent in the system, as this climatic factor has the highest

F-statistic for PC factor 1 in the RDA and the highest corre-

lation coefficient with outlier markers. Numerous studies have

suggested that temperature regime is an important variable influ-

encing local adaptation in Atlantic salmon (reviewed in Taylor

1991; Garcia de Leaniz et al. 2007) and that growth (Claytor et al.

1991; Nicieza et al. 1994a b; Paez et al. 2010) and immune-related

functions (Dionne et al. 2007, 2009) could be important targets

of local selection. Southern Atlantic salmon populations live in

warmer conditions and are known to grow faster and migrate to

sea at younger age (Power 1981; Metcalfe and Thorpe 1990),

which could be linked to living in a more productive environ-

ment. However, Nicieza et al. (1994a, b) observed a significantly
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Figure 6. Genetic linkage map showing the distribution of regional differentiation (FCT) of each SNP marker (n = 3118) on the top

panel and Pearson’s correlation coefficients (R) related to PC factor 1 (climate-temperature) on the bottom panel. Gray and white

rectangles separated by vertical dashed lines represent linkage groups (named SSA). On the top panel, circled dots indicate outlier

markers (significance level P = 0.05) and the horizontal dotted line indicates the average FCT among markers (0.058). On the bottom

panel, circled dots indicate outlier markers (significance level P = 0.05) and the horizontal dotted line indicates the average Pearson’s

correlation coefficient (R) among markers (0.320).

higher digestion and growth rate for salmon from higher latitude

(Scotland) compared to salmon from southern latitudes (Spain)

when reared at the same temperature. These results argue that

countergradient selection has resulted in selection for more ef-

ficient growth in northern latitudes to compensate for a shorter

growing season. Therefore, rather than local adaptation for high

growth rate in the southern latitudes, the countergradient theory

(reviewed in Conover and Schultz 1995) suggests that cold tem-

peratures, a proxy for short growing season length, might actually

be selecting for more efficient growth in higher latitudes. Fur-

thermore, temperature regime was found to be closely related to

bacterial diversity in the wild, which in turn was associated with

genetic diversity of an immune-competence gene, the major histo-

compatibility complex class-IIB gene (Dionne et al. 2007, 2009).

Genetic diversity at this locus is suggested to be involved in local

adaptation of Atlantic salmon to different pathogen communities

associated with different thermal regimes.

Geological parameters were, after climate, the environmen-

tal factors with the strongest links to genetic divergence. These

were primarily loaded by the geological provinces category, ge-

ological periods associated with rock formations, and some spe-

cific rock or substrate types. All of these geological categories

emphasized a division between populations from rivers draining

either on the north or on the south shore of the St. Lawrence

River, and supports the distinctiveness of Anticosti Island popula-

tions. Thus, rivers south of the St. Lawrence River and Anticosti
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Figure 7. Generalized linear models illustrating the relation between marker population allele frequency and average seasonal temper-

atures between May and September.

belonged to the Plate-forme du St-Laurent and Appalachian Oro-

gen geological provinces that are characterized by sedimentary

rock formations dating to Silurian and Devonian periods of the

Paleozoic era. In contrast, rivers draining on the north shore of

the St. Lawrence River belong to the Grenville Province, which is

mostly characterized by rock formation of gneiss type dating to the

Mesoproterozoic period of the Precambrian era. Many factors can

influence water chemistry, but aside from anthropogenic impacts,

geology has been shown to be a dominant factor (Stallard and

Edmond 1983; Johnson et al. 1997). Accordingly, the Southern

Québec and Anticosti rivers are characterized by alkaline wa-

ter. Because fish are surrounded by their environment, constant

osmotic, ionic, and pH regulation are required to maintain home-

ostasis. Although water pH outside neutrality represents a stress

for most fish, many species have adapted to alkaline or acidic wa-

ters (Pritchard 2003). We thus propose that regional specificity of

geological parameters may interact with water chemistry of rivers

to represent potential selective agents driving local adaptation in

Atlantic salmon populations. Furthermore, as reported in Perrier

et al. (2011), which found geological areas to significantly corre-

late with Atlantic salmon population genetic structure in France,

geological substrate is suspected to be instrumental in the propen-

sity of salmon to return to their natal river to spawn (Stabell 1984;

Dittman et al. 1996). Geological characteristics of rivers may be

an important factor influencing the accuracy of homing behavior

and consequently reduce straying among regional groups, which

would further contribute to maintain a regional component of

local adaptation.

EXTENT OF LOCAL ADAPTATION

By studying climatic and geological factors, we now have evi-

dence to argue for environmental selection driving adaptive di-

vergence at the regional level. In fact, the strong regional genetic

differentiation associated with distinct environmental features al-

lowed us to use bulks assays to assign an additional 28 popula-

tions to regional groups without requiring us to perform individual

genotyping. We emphasize that bulk assays provided additional

indications for potential regional local adaptation and better de-

fined the boundaries of this component in our system. The sig-

nificant associations of temperature and geology with regional

population genetic structure thus suggests these parameters are

among the most important environmental selective agents delin-

eating the geographical scale of local adaptation.

We observed a genome-wide distribution of divergent out-

liers and environmentally correlated markers, which is not un-

expected given the diversity of putative environmental selective
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agents identified. In fact, as discussed earlier, climate and geo-

logical characteristics can be used as proxies for many indirect

ecological differences among populations from different regional

groups, such as growing season length, pathogen diversity, and

water chemistry. Thus, numerous targets of selection spread across

the genome are more likely to emerge than a small number of tar-

gets in localized islands of adaptive divergence (Nosil et al. 2009).

Theory predicts that local selection acting in a species with hier-

archical population structure can lead to increased differentiation

between demes. Furthermore, Charlesworth et al. (1997) found

that under such conditions, local selection produced very high

differentiation values for loci close to targets of selection but

also high values for distant neutral loci with no selection. This

is precisely what we observed when exploring the environmental

correlation with either all 3118 SNPs, only neutral SNPs or with

only highly divergent markers. The RDA systematically indicated

an overall association between genetic and environmental diver-

gence. Because the association was strongest when considering

only the fewest outliers markers (rather than diminishing the value

of the observed association), we argue that it reinforces the envi-

ronmental selection arguments. Albeit weaker than those of puta-

tive targets of local adaptation, concordant differentiation patterns

across the genome might be indicative of what Thibert-Plante and

Hendry (2010) referred to as a generalized barrier to gene flow.

Other recent studies, for instance Cooke et al. (2012), also re-

ported a concordant but amplified genetic divergence when com-

paring potentially selected markers correlated with contrasting

environmental conditions against the neutral genetic divergence

of characin fish (Triportheus albus) in Amazonia. However, in

some cases contrasting patterns of adaptive versus neutral diver-

gence were detected due to a strong association between adaptive

divergence and environmental condition not reflected in the neu-

tral differentiation patterns (e.g., Gaggiotti et al. 2009; Bradbury

et al. 2010; Lee and Mitchell-Olds 2011). In such cases, some

outlier loci could also be linked to genetic incompatibilities re-

vealing ancestral divergence rather than actual markers associated

with selected genes to exogenous (environmental) factors (Bierne

et al. 2011).

FUNCTIONAL IMPLICATIONS

Although interpretation of available sequence annotation should

be made with caution, especially in an ecological context involv-

ing nonmodel species (Pavlidis et al. 2012; Pavey et al. 2012), they

remain a useful tool for determining possible functional targets

of selection, identifying candidate genes and framing hypotheses

to link environmental selective agents and adaptive divergence at

the genome level. The importance of temperature-related selec-

tion was predominant among the markers potentially associated

with adaptive divergence. Indeed, the GO categories overrepre-

sented among divergent outlier markers when compared to the

3118 markers were the same than those overrepresented among

the outlier markers highly correlated with temperature (fourth

quartile) when compared to the complete set of divergent outliers

(P = 0.05). Enriched annotations were primarily associated with

biological processes and functions linked to growth (e.g., regula-

tion of JNK cascade, ephrin, and frizzled binding). As reported

earlier, the sequences for markers revealing the most enriched

GO categories blasted to a syntenin-1 sequence from Atlantic

salmon. This protein functions as a binding protein for synde-

can, a transmembrane domain protein with an important growth-

factor-receptor activation function for one of its four forms (Carey

et al. 1997). Given the regional differentiation at these SNP mark-

ers located in growth-related genes, we propose that they might

bear a signature of thermal local adaptation linked to countergra-

dient selection imposed by growth season length. Thus, thermal

regimes may act as a selective agent driving local adaptation on

growth potential. This hypothesis should be tested by measur-

ing the impact of outlier allelic variants on enzyme function and

growth rate.

Conclusion
In summary, this study offers new insights on the geographic and

genomic extent of local adaptation in Atlantic salmon by com-

bining population genomics with landscape genetics. As in any

landscape genetics study, the relationships between environmental

conditions and genetic divergence presented are correlational and

not necessarily causal, but nevertheless provide testable hypothe-

ses for future studies, such as reciprocal transplants or specific

genotypes impacts on enzyme function, growth, or range-wide

fitness measurements in wild Atlantic salmon. Owing to a wide

geographic and genome coverage, we were able to rigorously con-

firm a hierarchical genetic structure, and found a strong regional

component of both neutral and potentially adaptive divergence

among the 54 populations we studied. We also found that this

regional genetic structure was significantly correlated with an

ecological structure described by a set of 49 environmental pa-

rameters. We found specific associations between environmental

factors related to climate (temperature) and geology with markers

potentially under divergent selection. This allowed us to propose

putative environmental selective agents and candidate genes po-

tentially involved in the process of local adaptation in Atlantic

salmon. We also found that markers potentially under divergent

selection were distributed throughout the genome. Finally, we

were able to use annotations to infer a plausible causal link for

environmental selection associated with growth-related functions.

Although we reported very strong support for a regional

component of local adaptation at the geographic level, we

lacked the genomic coverage to investigate the extent of adap-

tive hitchhiking surrounding our genome-wide potential targets of
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selection at the genomic level. An enhanced genomic coverage

could allow the investigation of precise genomic location poten-

tially under the effect of divergent selection and document more

precisely the location and size of islands of adaptive divergence

(Feder and Nosil 2010). Finally, although our results call for ex-

perimental confirmation of the adaptive hypotheses that they pro-

pose, this study illustrates how landscape population genomics

contribute to improve our knowledge of the evolutionary pro-

cesses affecting populations and may help develop conservation

tools integrating both genetic and environmental parameters and

their interactions (Funk et al. 2012).
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Figure S1. Within population allele frequencies estimated from bulk assays for 2831 SNPs on the x-axis and corresponding allele

frequencies for the same populations (n = 5) as measured by individual genotyping of the same individual (n = 25 individuals

per population).

Table S1. Single nucleotide polymorphism (SNP) markers’ categories.

Table S2. Single nucleotide polymorphism (SNP) markers observed (HO) and expected (HE) heterozygosities per population.

Table S3. Summary of the detection of markers potentially under selection using hierarchical Fdist genome scans implemented in

ARLEQUIN 3.5 (Excoffier and Lischer 2009).

Table S4. Pairwise measures of genetic differentiation (FST).

Table S5. Blast results from BLAST2GO and gene ontology (GO) terms annotation.

Table S6. Enrichment analysis results testing over- or under-representation of gene ontology (GO) terms.
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